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Abstract

This thesis designs and implements a continuous software engineering strategy for
sys-sage, a library for capturing and manipulating hardware topologies of computer
systems. While doing so, it explores different approaches and techniques to check a
correct implementation such as unit testing, mocking, dynamic analysis, coverage, and
sanitizing while highlighting their respective strengths and benefits. Furthermore, this
thesis compares several available Continuous Integration (CI) solutions and implements
a working approach to CI for sys-sage.
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1 Introduction

The sys-sage1 library allows users to capture their hardware components such as
NUMA memory nodes, storage, processors, chips, and caches. Furthermore, it models
a containment relation and paths of data traversal between components. This allows
programs to optimize procedures for a number of factors such as time or energy
consumption. At the time of writing, sys-sage employs several ways of sourcing
information:

• mtg42 for capturing the configuration of Nvidia GPUs

• hwloc3 to retrieve an abstraction of the hierarchical topology of modern architec-
tures

• Intel CAT4 to gather cache properties of Intel CPUs

• Files such as /proc/cpuinfo to gather CPU related information on Linux machines

Data from all sources is aggregated in a tree-graph data structure called node
topology which models containment. Connections between components of uni- or
bidirectional data transportation is also modeled by a digraph whose edges are called
data paths and whose vertices are nodes from the node topology.

To increase the library’s reliability we will augment the project with a unit testing
library and implement a Continuous Integration (CI) solution. The following chapters
are structured like this: In chapter 2 we will discuss several approaches to validation of
source code and how we integrated a testing suite into sys-sage. In chapter 3 we will
explain the purpose of CI, available solutions and how we integrated CI into sys-sage.
Finally, in the chapter 4 we summarize all conclusions.

1https://github.com/caps-tum/sys-sage
2https://github.com/caps-tum/mt4g
3https://www.open-mpi.org/projects/hwloc/
4https://github.com/intel/intel-cmt-cat
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2 Software Testing

Software testing describes the process of validating and verifying various aspects of
software systems. As described in [22], there are many approaches to software testing.
One notable method of software testing is unit testing.

2.1 Test Driven Development

Test Driven Development (TDD) is a specific approach to author unit tests in that the
programmer writes test before implementing the feature to be tested. As explained in
[3, 2], TDD can be part of the more general software development methodology known
as extreme programming (XP). In general this process typically involves the following
steps:

1. Write a test case for a new feature.

2. Run the test case, which initially fails because the feature has not been imple-
mented yet.

3. Write the minimum code necessary to pass the test case.

4. Re-run the tests to verify a correct implementation.

5. Refactor the code to improve its design and maintainability.

6. Repeat the process for the next feature.

The steps are visualized in 2.1 with emphasis on the cyclicity of the TDD process.
The advantages of using TDD is that software is thoroughly tested and that code quality
is maintained throughout the development process. Furthermore, cost of software
development is reduced as defects are caught early in the development process, when
they are easier and less expensive to fix.

2



2 Software Testing

Write test

Test fails

Implement featureTest succeeds

Polish implementation

Figure 2.1: Steps of TDD

2.2 Unit testing

Unit testing is a software testing method in which individual units or components
of a software system are tested in isolation from the rest of the system. A unit is the
smallest testable part of a software system, such as a function or method. Unit testing
is performed during the development phase of software development and is a key part
of the TDD methodology. The main goal of unit testing is to ensure that each unit of
the software system performs as expected and meets the requirements set out in the
design specification. This is achieved by writing test cases that exercise the code in
each unit and verifying that the output is correct for a given input. Usually, testing
frameworks are used which implement a logic to construct assertions, structure the
tests, and execute the tests, such as JUnit for Java or NUnit for .NET. Unit testing has
several benefits, including:

• Unit testing allows developers to catch defects as early as possible.

• Unit testing speeds up development by reducing the time required for manual
testing.

• Unit testing promotes the development of modular, reusable, and maintainable
code.

3



2 Software Testing

• Unit testing improves collaboration between developers by providing a shared
understanding of the software system.

Overall, unit testing is an essential part of modern software development practices
and is an effective way to ensure that software systems are reliable, maintainable, and
meet the requirements set out in the design specification.

2.2.1 xUnit

xUnit is a family of unit testing frameworks that originated from the original Smalltalk-
based SUnit framework. xUnit frameworks follow a similar structure and share many
common features, making it easy to learn and use a new framework from within the
family.

The basic structure of an xUnit test framework involves defining test cases as methods
in a test class, with each method testing a specific aspect of the code being tested. Each
test method typically contains one or more assertions, which check whether a specific
condition is true or false. The xUnit framework then provides a test runner that
discovers and executes the test cases and reports the results.

Some examples of xUnit frameworks include JUnit for Java, NUnit for .NET, and
CppUnit for C++. xUnit frameworks have become a widely used standard for unit
testing across many programming languages and platforms, providing a consistent and
standardized way to write and execute unit tests.

There is a plethora of unit test frameworks available, each with its distinguishing
features and trade-offs, and the choice of framework depends on the needs of the
specific project. While some frameworks support a rich set of features and thus are
well-suited for large-scale projects which have non-trivial testing requirements, other
frameworks focus more on simplicity, easy maintainability of the tests, and developer
friendliness. Furthermore, other frameworks simplify the process of integrating the
test suites into a predefined build system or allow the tests to be run in a resource-
constrained environment.

We will compare a selection of xUnit implementations for the C++ language:

1. Boost.Test1

• Part of the Boost libraries, open source

• Provides a rich set of assertions and test fixtures

• Supports test suites and hierarchical test organization

• Supports both unit and acceptance testing

1https://github.com/boostorg/test
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2 Software Testing

• Can generate XML output for integration with other tools

• Has integration with the Boost build system

2. Catch22

• Open source, header-only library

• Provides a simple syntax for writing tests and assertions

• Supports BDD-style testing with natural language constructs

• Supports tag-based test filtering

• Has a built-in test runner and supports integration with other test runners

3. CppUnit3

• Open source, part of the xUnit family of frameworks

• Provides a rich set of assertions and test fixtures

• Supports test suites and hierarchical test organization

• Can generate XML output for integration with other tools

• Has integration with the CMake build system

4. doctest4

• Open source, header-only library

• Provides a simple syntax for writing tests and assertions

• Supports subcases, which allow for more granular test results

• Can detect memory leaks and report them as part of test results

• Supports integration with other test runners

• Lightweight and fast

5. GoogleTest5, also known as gtest

• Open source, developed by Google

• Provides a rich set of assertions and test fixtures

• Supports parameterized tests

2https://github.com/catchorg/Catch2
3https://freedesktop.org/wiki/Software/cppunit/
4https://github.com/doctest/doctest
5https://github.com/google/googletest
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2 Software Testing

• Supports sharding, a form of work distribution, i.e. the set of tests to run is
partitioned across several machines

• Can generate XML and JSON output for integration with other tools

• Can be used with a variety of build systems, including CMake and Make

6. µt6

• Open source, header-only library

• Leverages C++20 features:

– std::source_location to replace the __FILE__ and __LINE__ macros

– Non-type template parameters to allow for constant matchers

– Template parameter list for generic lambdas

• Provides a simple syntax for writing tests and assertions

• Supports test suites and hierarchical test organization

• Supports test fixtures, but with a lightweight implementation

• Has a small footprint and is designed for use in resource-constrained envi-
ronments

• Can generate XML output for integration with other tools

• It is deeply customizable, since custom test runners can be implemented.

• Supports Behavior-driven development (BDD).

• Supports Gherkin specifications.

• In contrast to all other unit test frameworks, µt is implemented without any
macros, if full C++20 language support is available.

The sys-sage project is rather small, and the focus was on keeping it that way, ruling
out Boost.Test and Google Test. As sys-sage compilation time should not significantly
increase due to the additional testing library, choosing a library with a small compile
time footprint was essential, ruling out Catch2. According to Viktor Kirilov, the
creator of doctest, Catch2 usually compiles 25x slower than doctest 7. We want to
be able to write several disjoint test suites which would subsume tests of different
aspects of the library. Also, to ease maintenance, all test cases should be automatically
registered. Since the API of the library is quite simple to use, we had no use of
advanced testing techniques. As sys-sage already uses C++20, we were not restricted

6https://github.com/boost-ext/ut
7https://sched.co/BgsI
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2 Software Testing

to macro-based test implementations. As such, we ended up choosing µt as out testing
library because it is easy to integrate since it is a header-only library, has very fast
compilation times, supports all the required testing constructs and due to its C++20
focused implementation future-proofed the project as a whole.

2.2.2 Writing unit tests with µt

To use the functionality from µt, first we have to include boost/ut.hpp. In sys-sage,
this header is exported from the µt CMake interface library. Given a summation
function defined like this:

1 constexpr auto sum(auto... values) { return (values + ...); }

We can now place write expectations inside the main function:

1 expect(sum(0) == 0_i);
2 expect(sum(1, 2) == 3_i);
3 expect(sum(1, 2) > 0_i and 41_i == sum(40, 2));

Integer literals are suffixed with the _i literal defined by µt. This allows the over-
loaded equal operator to be used. Without using the suffix, the built-in comparison
operator would be used instead. This would still work, as expect can take a boolean
value, but using the overloaded operators allows for more precise test failure messages.

Compare the following outputs:

1. Literally just using integers yields a plain boolean valued response:

• expect(sum(2) == 0)

• FAILED in: ...:9 - test condition: [false]

2. Using the overloaded literal suffixes yields a more descriptive error message:

• expect(sum(2) == 0_i)

• FAILED in: ...:9 - test condition: [2 == 0]

3. Alternatively, we can use matchers to enforce the same behavior:

• expect(that % sum(2) == 0)

• FAILED in: ...:9 - test condition: [2 == 0]

Assertions can be subsumed in tests using an overloaded string literal for conve-
nience:

7



2 Software Testing

1 "sum"_test = []
2 {
3 expect(sum(0) == 0_i);
4 expect(sum(1, 2) == 3_i);
5 expect(sum(1, 2) > 0_i and 41_i == sum(40, 2));
6 };

These tests can be arbitrarily nested inside other test groups. The square bracket pair
indicates that the test block is actually a lambda, thus its execution is deferred and
invoked by a test runner.

Initially, these expectations can reside inside the main function. But to decouple
subsystems to be tested, we can define test suites. If there is a bijective mapping
between test source files and subsystems, the test suite variable does not have to be
named meaningfully. Instead, the name is encoded in the test suite’s value template
parameter. Declaring the global variable to be static allows us to name all the test
suites _.

1 static suite<"arithmetic"> _ = []
2 {
3 "sum"_test = []
4 {
5 expect(sum(0) == 0_i);
6 expect(sum(1, 2) == 3_i);
7 expect(sum(1, 2) > 0_i and 41_i == sum(40, 2));
8 };
9 }

Tests inside suites are automatically invoked. For successful linkage, a main function
still has to be defined, but if all test cases reside within suites, the body of the main
function is empty.

2.3 Automatic XML validation

One particularly interesting function is exportToXml, serializing a topology from mem-
ory to the disk using an XML representation. This is quite a difficult functionality to
test because each test should only validate a single feature. Since libxml2 is a C API, it
is also quite verbose and error-prone to use. In order to easier scale the XML export
tests, we outsource much of validation work to a formal XML Schema Definition (XSD).
Instead of procedural validating a semantically valid hierarchy of XML nodes in each

8
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test, we author another XML file which specifies a correctly exported document in a
declarative way. Fortunately, libxml2 already implements XML schemas, thus we do
not need to introduce another library dependency.

XML schemas are used to define the structure, content, and data types of an XML
document. An XML schema provides a set of rules that a document must follow in
order to be considered valid according to that schema.

An XML schema is typically defined in a separate XML file, which can be referenced
by other XML documents. The schema file contains a set of elements, attributes, and
data types, along with rules for how they can be used in a document. For example, the
schema might specify that an element must have a certain name, can occur a certain
number of times, or must contain certain child elements or attributes.

XML schemas use namespaces to identify the elements and data types defined in
the schema. This allows different schemas to be used together in the same document
without conflicts. A schema can also define complex data types, such as sequences
or choices of elements, and can include constraints, such as minimum and maximum
values, regular expressions, or references to other elements or attributes.

When an XML document is validated against an XML schema, the document is
checked to make sure that it follows all the rules specified in the schema. This includes
checking the structure of the document, validating the data types of its elements and
attributes, and ensuring that it meets any other constraints specified in the schema. If
the document does not conform to the schema, it is considered invalid.

XML schemas are widely used in a variety of applications, including web services,
data exchange formats, and configuration files. By providing a standard way to define
the structure and content of XML documents, XML schemas make it easier for different
systems to exchange data and work together seamlessly.

For the sys-sage unit tests, we require a single XML schema describing a valid export.
The head of such a schema file states the XML version and the version of the XML
schema.

1 <?xml version="1.0"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

To state that a certain node named x is required in a certain place, we use the <
xs:element name="x"> tag. Inside such an element, we can use <xs:complexType> to
describe the structure of said element. In our case, the outermost element is <sys-sage>
which can contain both the <components> and <data-paths> elements.

1 <!-- The <sys-sage> root tag -->
2 <xs:element name="sys-sage">
3 <xs:complexType>

9
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4 <xs:all>
5

6 <!-- The component trees -->
7 <xs:element name="components">
8 <!-- ... -->
9 </xs:element>

10

11 <!-- The data paths -->
12 <xs:element name="data-paths">
13 <!-- ... -->
14 </xs:element>
15

16 </xs:all>
17 </xs:complexType>
18 </xs:element>

2.3.1 Components

The components form a recursive data structure. The schemas for all possible sub-
elements such as cores or threads are grouped within a sequence of choices.

1 <!-- Each component can recursively contain more components -->
2 <xs:group name="components">
3 <xs:sequence>
4 <xs:choice minOccurs="0" maxOccurs="unbounded">
5 <xs:element name="None" type="none" />
6 <xs:element name="HW_thread" type="hw_thread" />
7 <xs:element name="Core" type="core" />
8 <xs:element name="Cache" type="cache" />
9 <xs:element name="Subdivision" type="subdivision" />

10 <xs:element name="NUMA" type="numa" />
11 <xs:element name="Chip" type="chip" />
12 <xs:element name="Memory" type="memory" />
13 <xs:element name="Storage" type="storage" />
14 <xs:element name="Node" type="node" />
15 <xs:element name="Topology" type="topology" />
16 <xs:element name="Attribute" type="attribute" />
17 </xs:choice>
18 </xs:sequence>
19 </xs:group>

10
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All component elements inherit from a common base type called component as XSD
allows for type inheritance. This base type contains the common fields id, name, addr,
and count. The following code listing defines the component base type and its fields
which are typed accordingly:

1 <!-- Component base class -->
2 <xs:complexType name="component">
3 <xs:group ref="components"></xs:group>
4 <xs:attribute name="id" type="xs:integer" />
5 <xs:attribute name="name" type="xs:string" />
6 <xs:attribute name="addr" type="addr" />
7 <xs:attribute name="count" type="xs:integer" />
8 </xs:complexType>

The group tag refers to the group defined above and means that each component
itself can contain one or more components itself.

The addr type of the equally called addr field is a custom type. This memory address
is used as a unique identifier for all components and are required by data paths and is
encoded has a hexadecimal string of digits with a 0x prefix:

1 <!-- A memory address, e.g. 0xff0011234 -->
2 <xs:simpleType name="addr">
3 <xs:restriction base="xs:string">
4 <xs:pattern value="0x[0-9a-fA-F]+"></xs:pattern>
5 </xs:restriction>
6 </xs:simpleType>

To derive from a type, we use the <xs:extension> tag. The following code listing
defines the memory type, its inheritance, and its fields which are typed accordingly:

1 <!-- Memory component -->
2 <xs:complexType name="memory">
3 <xs:complexContent>
4 <xs:extension base="component">
5 <xs:attribute name="size" type="xs:integer" />
6 <xs:attribute name="is_volatile" type="xs:integer" />
7 </xs:extension>
8 </xs:complexContent>
9 </xs:complexType>

The other components are defined similarly.
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2.3.2 Data paths

Data paths form a second graph with components as vertices and data paths as edges.
Since data paths do not form a recursive data structure, their XSD is much more terse.
Indeed, their type is defined inline, not at another place in the XML file and are grouped
within a repeated choice. The source and target attributes refer to components using
the unique memory addresses and are thus typed as addr.

1 <!-- The data paths -->
2 <xs:element name="data-paths">
3 <xs:complexType>
4 <xs:choice>
5 <xs:element name="datapath" minOccurs="0" maxOccurs="unbounded">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element name="Attribute" type="attribute" minOccurs="0"
9 maxOccurs="unbounded" />

10 </xs:sequence>
11 <xs:attribute name="source" type="addr" />
12 <xs:attribute name="target" type="addr" />
13 <xs:attribute name="oriented" type="xs:integer" />
14 <xs:attribute name="dp_type" type="xs:integer" />
15 <xs:attribute name="bw" type="xs:double" />
16 <xs:attribute name="latency" type="xs:double" />
17 </xs:complexType>
18 </xs:element>
19 </xs:choice>
20 </xs:complexType>
21 </xs:element>

2.3.3 Attributes

Sys-sage allows the library user to embed custom data in components and data paths.
Some hardware specific extensions of sys-sage itself use this feature. An example
would be the CPU info module which can retrieve the CPU frequencies. These custom
attributes are stored in a hash map, mapping strings which encode the attribute name
to their actual values. Attributes are exported using user-supplied callbacks which
are called during the export. Since the layout is not knowable by sys-sage, their XSD
explicitly tells the validator to skip their contents:

1 <!-- Attributes for components and data paths -->

12
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2 <xs:complexType name="attribute">
3 <xs:sequence>
4 <xs:any minOccurs="0" maxOccurs="unbounded" processContents="skip" />
5 </xs:sequence>
6 <xs:attribute name="name" />
7 <xs:attribute name="value" />
8 </xs:complexType>

2.4 Mocking

Mocking as explained in [20] is a technique used in software testing to simulate the
behavior of a complex system or component that a software unit depends on, but
which is difficult or impossible to include in the testing environment. In other words,
it allows developers to create test environments that mimic the behavior of external
dependencies, without actually relying on the real system or component.

Mocking is typically used in unit testing to isolate and test individual components of
a software system. When a unit under test depends on another component or system,
such as a database, web service, or external API, mocking can be used to simulate the
behavior of the external dependency and control the input and output of the system or
component. This allows the developer to test the behavior of the unit under different
scenarios, without affecting the real external dependency.

Mocking is often implemented using a mocking framework or library, such as
Mockito for Java or Moq for .NET. These frameworks allow developers to create mock
objects that simulate the behavior of external dependencies. The mock object provides
a stand-in for the real dependency, allowing the developer to control its behavior and
responses to specific inputs.

Mocking has several benefits, including:

• Isolation: Mocking allows to isolate the component being tested from its depen-
dencies. This isolation ensures that only the specific behavior of the component
under test are being tested, rather than the combined behavior of the component
and its dependencies.

• Control: Mocking provides a way to control the behavior of the mocked objects
during testing, allowing to simulate various scenarios and test edge cases that
might be difficult to reproduce in a real-world environment.

• Speed: Mocking can help speed up testing, as it allows to test the component in
isolation, without the need for a full environment or external resources. This can

13



2 Software Testing

help reduce the time and effort required for testing and make the development
process more efficient.

• Reliability: Mocking helps to improve the reliability of tests, as it ensures that
the tests are consistent and repeatable, regardless of the external environment or
conditions.

• Maintainability: Mocking can also help to improve the maintainability of software
systems, as it allows to easily update and refactor code without affecting the
behavior of the mocked objects or the tests that depend on them.

In the specific case of sys-sage, we investigated whether we can mock hardware and
platform specific features in order to run the tests on any hardware. The first problem
we encountered was the fact that freestanding functions, i.e. not methods, cannot be
mocked at all. In addition to this requirement, all mocked methods must be virtualized,
since mock objects overwrite methods by inheriting from the real base class. Some
mocking frameworks such as gmock8 also allow using non-virtual mocking objects, but
in that case the whole library has to be rewritten to template functions, which either
accept the real implementation or the mocked one. Furthermore, it has to be made
clear that the mocked code itself is not tested. Instead, the interaction between the
mocked code and the rest of the code base is tested. But since the platform specific
functions just interact with third-party APIs and store the result in a variable, there is
no interaction worth being tested. The results are also not exported in the XML. We
deem the trade-off to virtualize methods to make them mockable as not worth being
paying.

2.5 Code coverage

Code coverage refers to the practice of injecting code in order to track which code paths
a program executes at runtime. GNU Compiler Collection (GCC) has options in order
to automatically inject such instructions. Assume with have a C++ program like this:

1 int foo(int x)
2 {
3 if (x < 2)
4 {
5 return -1;
6 }
7 else if (x < 10)

8https://google.github.io/googletest/gmock_cook_book.html#MockingNonVirtualMethods
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8 {
9 return 2;

10 }
11 else
12 {
13 return 5;
14 }
15 }
16

17 int main()
18 {
19 int acc = 0;
20 for (int i = 0; i < 5; ++i)
21 {
22 acc += foo(i);
23 }
24 return acc;
25 }

To inspect with code paths the program takes at runtime, we use GCC9 to generate
code to reconstruct coverage information. In order to do so, compile the file with an
additional option:

1 g++ main.cpp -o main --coverage

When inspecting the file system after compilation, we notice a new file called
main.gcno. It contains additional compile-time information such as a graph represen-
tation of the program and a mapping of that graph to source line numbers. When
executing the binary file main, a new file will be written called main.gcda containing
runtime information about how the graph represented by the program has been ex-
ecuted. The information in both the .gcno and .gcda files are encoded in a compact
binary format, thus not readable with a text editor. In order to access the information
in a human-readable way, we need to use another tool: gcov main.cpp generates a
main.cpp.gcov file which is the verbatim C++ code with annotations:

1 -: 0:Source:main.cpp
2 -: 0:Graph:main.gcno
3 -: 0:Data:main.gcda
4 -: 0:Runs:1
5 -: 0:Programs:1

9https://gcc.gnu.org/
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6 5: 1:int foo(int x)
7 -: 2:{
8 5: 3: if (x < 2)
9 -: 4: {

10 2: 5: return -1;
11 -: 6: }
12 3: 7: else if (x < 10)
13 -: 8: {
14 3: 9: return 2;
15 -: 10: }
16 -: 11: else
17 -: 12: {
18 ######: 13: return 5;
19 -: 14: }
20 5: 15:}
21 -: 16:
22 1: 17:int main()
23 -: 18:{
24 1: 19: int acc = 0;
25 6: 20: for (int i = 0; i < 5; ++i)
26 -: 21: {
27 5: 22: acc += foo(i);
28 5: 23: }
29 1: 24: return acc;
30 -: 25:}

The first five lines form the preamble containing meta information about the coverage
itself, such as the binary files this dump is constructed from and how many times the
program has been executed. Consecutive program executions are non-destructive and
instead accumulate the graph traversals. A leading integer number before a colon on a
line states how many times this line has been executed across all program executions. A
leading hash symbol states that this line has never been executed. Lines with a leading
dash do not contain executable code. From the above listing, we can infer that foo has
been called five times, twice returning negative one, thrice returning two, and never
returning five.

Code coverage is quite helpful when authoring tests because it pinpoints code paths
which have not been tested due to a special argument permutation required or even
entire functions.

For sys-sage, we employed code coverage to check how many library functions have
been tested, and how many edge cases were triggered by the unit tests. To enable code
coverage, the configuration option TEST_COVERAGE has to be set.
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2.6 Dynamic code analysis

Dynamic code analysis is a software testing technique that involves analyzing the behav-
ior of a program as it runs on an actual processor or within a simulated environment.
Tools derive errors, memory leaks, buffer overflows, race conditions, performance
issues, security vulnerabilities, and other problems from the runtime behavior of the
program. Examples for dynamic code analysis tools for C++ include Valgrind10 and
chap11.

In contrast, static code analysis investigates the program without actually running it.
Static code analysis tools can operate at different levels such as source code, assembly
or byte code level. They identify problems such as syntax errors, type errors, code
duplication, or potential vulnerabilities. Since the program does not have to be actually
run, static analysis works regardless the hardware requirements of the program and
thus is usually tightly integrated in an IDE. Examples for static code analysis tools for
C++ include cpplint12 and clang_analyzer13.

2.7 Input Generation

Automated test input generation is the technique to automatically generate input data
for tests in order to conform to a specific condition, such as failing an assertion and
thereby proving the unsoundness of the component under test. With advances of
computer power in the 2000s, new computationally intensive approaches have been
developed, such as symbolic execution, search based testing, and fuzzing. In the
following sections, we will shed light on a few of these techniques.

2.7.1 Symbolic Execution

Symbolic execution has been proposed by [18]. It is a static analysis technique that
executes a program with symbolic inputs rather than with concrete values. While
running a program, at each instant the program is said to be in a symbolic state. This
state depends solely on the program inputs and a set of constraints on the inputs which
all have to be fulfilled. The set of constraints is called the path condition. While running
the program, the symbolic state and the path condition are built. Initially, the path
condition starts out as a tautology as the program is able to start with any input values.
During each step modifying a variable, the symbol is also updated inside the symbolic

10https://valgrind.org/
11https://github.com/vmware/chap
12https://google.github.io/styleguide/
13https://clang-analyzer.llvm.org/
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state. When reaching a divergent control flow, the analysis tracks each separate branch
while adding a constraint to each new path condition that makes the program follow
a specific branch. To compute what inputs, if any, will execute a particular statement
or result in branching in a specific way, the path condition at that point is given to an
satisfiability modulo theories (SMT) solver.

A way of generating a minimal set of inputs that yield a certain symbolic state
from the path condition is explained in [21, 1, 11], and SAT4J14 is available as a Java
implementation.

[4] is an implementation of a symbolic execution tool which automatically generates
test with focus on high coverage (usually above 90%). Another implementation of
symbolic execution can found in [5]. [8] is an improvement in the sense that it only
symbolically executes arbitrary portions of a full system and allows to seamlessly
transition back and forth between symbolic and concrete execution. Further reading
about the topic of symbolic execution is available in [6].

The effectiveness of symbolic execution is bottle necked by the theories of constraint
solving. Sometimes sets of constraints may arise that the constraint solver is unable to
solve. A major improvement in that regard is dynamic symbolic execution (DSE) as
described in [9, 15, 19]. In contrast to regular symbolic execution, it runs a concrete
execution in addition to the symbolic execution. Implementations for DSEs are available
in [13, 24, 26].

2.7.2 Search-based Testing

Search-based software testing (SBST) is another approach that uses metaheuristic search
algorithms to explore a space of input candidates to cover all branches in a program.
The problem of finding such a candidate is interpreted as an optimization problem
which is guided by heuristics such as genetic algorithms, simulated annealing, hill
climbing techniques, scatter search, particle swarm optimization, and tabu search.
Found solutions are ranked by fitness functions.

SBST is able to generate large number of tests, increasing coverage thereby. The
technique is also good at finding edge cases and boundary conditions that might be
difficult to identify manually. Main challenges include the need to define appropriate
fitness functions that capture the desired testing criteria, the computational complexity
of the search process, and the risk of overfitting the test cases to specific implementations
of the software. Despite these challenges, SBT seems to be an effective approach to
automated testing in a variety of applications.

An application of SBST in the broader context of software engineering is given in
[16].
14http://www.sat4j.org/
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2.7.3 Random Testing

While totally random input data for tests is a valid approach, it generates a possibly
unmanageable number of test cases. Thus, techniques have been developed to select
a subset of random data to decrease the number of tests such as in [10, 23]. One
such technique is adaptive random testing as in [7] which selects new test input that
is the most distant from the previously executed test inputs, according to a certain
criterion, while other candidates are discarded. Studies like [17] show that adaptive
random testing yields in far less test cases, although at the cost of additional overhead
generating them.

2.7.4 Fuzzing

Like random testing, fuzzing is a technique for generating random input for tests in or-
der to find vulnerabilities or errors. Unlike random testing though, the input data is not
sampled from a random input space, but instead retrieved by mutating or transforming
input data that is known to be valid in a way that makes the originally valid input
data malformed, out of range, or otherwise erroneous. Fuzzing is particularly useful
for testing systems that accept untrusted input, such as web applications, network
protocols, and file formats, since it can help to identify security vulnerabilities or other
unexpected behavior.

The problem with black-box fuzzers is that without knowledge about the semantic
structure of the program to be tested, the odds of triggering a vulnerability is usually
low. As an example, the probability of triggering the error case in this function is 2−32.

1 int foo(int x) {
2 int y = 2 * x;
3 if (y == 42) {
4 std::abort();
5 }
6 return y + 2;
7 }

White-box fuzzers such as [14] alleviate this problem by gaining insight to the
program semantics using approaches such as DSE.

In the specific case of sys-sage, after consideration, fuzzing has been deemed to be
not feasible. The library puts a lot of burden on the user. Effectively no function tests for
null pointers or invalid values in general. Also, semantically invalid inputs to functions
such as a cyclic tree structure are not detected by functions and lead to non-terminating
executions. Increasing robustness would introduce additional complexity and overhead
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to the library which has been deemed undesirable.

2.8 Sanitizers

Sanitizers are tools that inject code or instructions into the output binary which are
used to detect runtime errors that can lead to security vulnerabilities, crashes, or other
unexpected behavior in a software.

There are several types of sanitizers, each targeting different types of bugs. Some of
the most common types include:

1. Address Sanitizer (ASan): Detects memory-related errors such as buffer overflows,
use-after-free, and memory leaks.

2. Memory Sanitizer (MSan): Detects uninitialized memory reads.

3. Thread Sanitizer (TSan): Detects data race conditions, which occur when multiple
threads access the same data simultaneously without proper synchronization.

4. Undefined Behavior Sanitizer (UBSan): Detects sources of undefined behavior such
as integer overflows or null pointer dereferences.

By detecting issues that are impossible to detect ahead of execution, sanitizers help
to improve the quality and security of software systems. Since they provide automated
feedback to the developer, sanitizers also reduce time and effort required for manual
testing and debugging. A lot of IDEs also support sanitizers natively or through
third-party plugins, which can be enabled by the developer during the build process or
as part of the testing pipeline. sys-sage accepts the following configuration options:

• TEST_ASAN enables the address sanitizer

• TEST_TSAN enables the thread sanitizer

• TEST_UBSAN enables the undefined behaviour sanitizer

Notice though that TEST_ASAN and TEST_TSAN mutually exclusive, i.e. only one can be
enabled per build.
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CI as explained in [25] is a part of the continuous software engineering methodology
consisting of CI, Continuous Deployment (CD), and Continuous Delivery (CDE). The
goals of these three paradigms can be summarized as such:

• CI refers to the practice of committing and merging authored source code from
all developers working on the same project on a regular basis, such as multiple
times a day. Each time work is merged, the production-readiness is verified
by automated tests. CI aims to reduce release cycles and increase developer
productivity [12].

• CDE aims to improve customer feedback by always delivering a production-ready
build after each successful CI run [27].

• CD is an advancement of CDE as it automatically deploys the built application to
the production environment. CDE on the one hand can be seen as a pulled-based
mode where a deployment has to be decided, planned, and at least partially
involves manual steps. CD on the other hand can be interpreted as a push-based
ll approach where deployment occurs automatically on a regular basis without
any manual steps. [25]

3.1 Comparison of CI solutions

Some popular CI tools include Jenkins1, Travis CI2, CircleCI3, and GitHub Actions4,
which provide a wide range of features such as automated builds, testing, and deploy-
ment, as well as integrations with popular code repositories and development tools.
Many modern software development teams use CI as a core part of their development
workflow, as it helps them to deliver high-quality software more efficiently and reliably.
As sys-sage is hosted on a GitHub repository, we decided to implement the CI solution

1https://www.jenkins.io
2https://www.travis-ci.com
3https://circleci.com
4https://github.com/features/actions
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Jenkins Travis CI CircleCI GitHub Actions

Available since 2011 2011 2011 2019
Open source ✓ ✓
Free hosted tier ✓ ✓
Minutes per month N/A N/A 6000 2000
in free hosted tier
Free self-hosting ✓ ✓ ✓
CD ✓ ✓ ✓ ✓
Hardware

x86 ✓ ✓ ✓ ✓
Arm ✓ ✓ ✓
PowerPC ✓ ✓
IBM Z ✓ ✓

OS
Linux ✓ ✓ ✓ ✓
FreeBSD ✓ ✓
macOS ✓ ✓ ✓ ✓
Windows ✓ ✓ ✓ ✓

C++ support ✓ ✓ ✓ ✓

Table 3.1: Comparison of CI solutions.

using GitHub Actions to keep the configuration and maintenance overhead of sys-sage
at a minimum.

3.2 GitHub Actions

According to [28], approximately 30% of open-source GitHub repositories use GitHub
Actions. Furthermore, the survey indicates that implementing the CI solution has key
benefits:

1. More rejections of pull requests (PRs)

2. More communication in accepted PRs

3. Less communication in rejected PRs

4. Fewer commits in accepted PRs

5. More commits in rejected PRs
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6. More time to accept a PR

3.3 Workflow

GitHub Actions allows defining workflows which are executed upon a specified trigger-
ing event, such as a push, a new PR, or merging a PR into the main branch. Workflows
are defined in declarative YAML files inside the .github/workflows/ directory. Each
workflow file defines its triggering event using the on property and can define multiple
actions using the jobs property. Every action has to specify on which platform it is
supposed to run using the runs-on property. In the case of sys-sage, we use the ubuntu-
latest platform referring to the latest available release of the Ubuntu distribution. Jobs
can form vertices inside a possibly disconnected digraph using the needs property. If
the specified action happens to fail, the action the property is declared on will not be
invoked. This allows to construct entire pipelines composed of multiple action which
can fail mid-execution. We made use of this feature to run the sanitizers only if the unit
tests succeeded.

The commands executed by the action are defined using the steps array-property.
Each step can be either a predefine action indicated by uses or a shell command set by
run. The unit testing action for sys-sage has 4 steps:

1. Checkout the repository using actions/checkout@v3

2. Configure the project by running CMake

3. Build the test suites

4. Run the tests

Steps can communicate failure through a non-zero exit code from the process.
The other actions are in principle the same as the unit test but enable certain con-

figuration options to enable a specific sanitizer. This introduces considerable code
repetition inside the workflow file. GitHub provides reusable actions which can be
used as subroutines with input and outputs variables. The common workflow that
checks out, configures, builds, and runs the tests is realized as a reusable workflow
with a single parameter for additional configuration flags. The unit testing action and
all sanitizer actions call this common action, the sanitizer action specifying the required
flag. The overhaul CI workflow can be visualized as the digraph in 3.1.
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Unit Tests

Address Sanitizer

Thread Sanitizer

Undefined Behaviour Sanitizer

Figure 3.1: CI workflow
Arrow direction indicates dependency.

3.3.1 Documentation Coverage

To generate a documentation coverage report, we use Coverxygen 5 which is an open-
source command-line tool. We first instruct Doxygen, which is the documentation
generation tool that sys-sage uses, to produce an XML representation of the documen-
tation. This output is then consumed by Coverxygen which assembles a single JSON
report. To print all important undocumented symbols and their source location, we
created a Python script. To verify adequate documentation coverage on an automatic
basis, we added a job to the CI pipeline.

5https://github.com/psycofdj/coverxygen
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4 Summary

We have successfully implemented a CI solution for sys-sage. For the test framework
we chose µt. In total there are 7 test suites corresponding to the modules: topology
, data-path, export, cpuinfo, hwloc, gpu-topo, and caps-numa-benchmark. There are
43 test cases containing 226 assertions. To run the tests, configure the project while
enabling the configuration option in the sys-sage root directory. Building the test target
then yields a binary which executes all test cases:

1 cmake -S . -B build -DCMAKE_BUILD_TYPE=Debug -DTEST=ON
2 cmake --build build --target test
3 ./build/test/test

The tests can easily be extended by new suites and test cases as new modules and
functions are implemented into sys-sage. To aid the validation of the XML exporter,
we authored a XSD file which can be used to formally verify exported XML files. To
find more bugs, we added configuration options to build instrumented binaries. GCC
offers an address-, a thread-, and an undefined behavior sanitizer. To inspect that all
functions and all of their branches were tested, we added a configuration option to
build special binaries which report their runtime coverage.

As the CI solution, we chose GitHub Actions. Upon each commit pushed to the
repository, a pipeline is started which first runs all test cases. If they succeeded, the tests
are re-run with different sanitizers. In addition to that, the documentation coverage is
reported.
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Abbreviations

TDD Test Driven Development

BDD Behavior-driven development

XSD XML Schema Definition

GCC GNU Compiler Collection

CI Continuous Integration

CD Continuous Deployment

CDE Continuous Delivery

SMT satisfiability modulo theories

DSE dynamic symbolic execution

SBST search-based software testing

PR pull request
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